Národní úložiště šedé literatury Nalezeno 1 záznamů.  Hledání trvalo 0.00 vteřin. 
Nanostructures for advanced plasmonic applications
Kejík, Lukáš ; Brzobohatý,, Oto (oponent) ; Dostálek,, Jakub (oponent) ; Šikola, Tomáš (vedoucí práce)
Plasmonics, characterized by the coupling of free electron oscillations in metals with electromagnetic waves, has come to the forefront with advancements in nanotechnology. This synergy results in remarkable properties of nanoscale objects, characterized by confined and enhanced electromagnetic fields. These features pave the way for a wide array of nanostructure applications, spanning biosensing, emission enhancement, solar energy harvesting, and optical component substitution. This dissertation is centered on the application of plasmonic nanostructures, primarily focusing on planar optical components known as metasurfaces. Additionally, it explores their use in photocatalytic applications, harnessing the energetic hot charge carriers generated through plasmonics. The dissertation begins with an introduction to the theoretical foundations of plasmonics, highlighting key parameters governing plasmonic properties and providing an overview of its most compelling applications. Subsequently, it comprises four experimental sections which show the utilization of plasmonic nanostructures for various purposes, including the phase of light control, dynamic metasurfaces, investigations of inner crystallinity effects, and the utilization of hot charge carriers in photoelectrochemical systems. These studies share a common theme of employing advanced or less conventional materials, such as vanadium dioxide or transition metal dichalcogenides, within the realms of plasmonics and nanotechnology.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.